
 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45116 541

 A Scalable Two-Phase Top-Down Specialization

Approach for Data Anonymization using

MapReduce on Cloud

 Ranjana Nadagoudar
1
, Radhika

2

Associate Professor, Dept. of Computer Science and Engineering, VTU RO Centre, Kalaburgi, India
1

IV Sem M. Tech, Dept. of Computer Science and Engineering, VTU RO Centre, Kalaburgi, India
2

Abstract: A large number of cloud forces require users to carve up private data like electronic health records for data

analysis or mining, bringing privacy concerns. Anonymizing data sets via generalization to satisfy certain privacy

requirements such as k-anonymity is a widely used category of privacy preserving techniques. At present, the scale of

data in many cloud applications increases massively in accordance with the Big Data trend, thereby making it a

challenge for commonly used software tools to confine, manage, and process such large-scale data within a adequate

elapsed time. As a result, it is a challenge for existing anonymization approaches to accomplish privacy preservation on

privacy-sensitive large-scale data sets due to their insufficiency of scalability. In this paper, we propose a scalable two

phase top-down specialization (TDS) to anonymize large-scale data sets using the MapReduce framework on cloud. In

both phases of our approach, we deliberately design a group of inventive MapReduce jobs to concretely accomplish the

specialization computation in a highly scalable way. Experimental assessment results demonstrate that with our

approach, the scalability and efficiency of TDS can be significantly enhanced over existing approaches.

Keywords: Data anonymization, top-down specialization, MapReduce, cloud, privacy preservation

I. INTRODUCTION

 CLOUD computing, a disruptive trend at present,

poses a considerable impact on current IT industry and

research communities [1]. Cloud computing provides

massive computation power and storage capacity via

utilizing a large number of commodity computers together,

enabling users to organize applications cost-effectively

without heavy infrastructure asset. Cloud users can reduce

huge upfront investment of IT infrastructure, and focus on

their own core business. However, numerous possible

customers are still diffident to take advantage of cloud due

to privacy and security concerns [5]. The research on cloud

privacy and security has come to the depiction [9]. Privacy

is one of the most concerned issues in cloud computing,

and the concern aggravates in the perspective of cloud

computing although some privacy issues are not new[1],

[5]. Personal data like electronic health records and

financial transaction records are usually deemed extremely

sensitive although these data can present significant human

benefits if they are analyzed and mined by organizations

such as disease research centres. Data privacy can be

divulged with less effort by malevolent cloud users or

providers because of the failures of some conventional

privacy protection measures on cloud [5]. This can bring

substantial economic loss or strict social reputation

mutilation to data owners. Hence, data privacy issues need

to be addressed urgently before data sets are analyzed or

pooled on cloud. Data anonymization has been extensively

studied and widely adopted for data privacy preservation

in non interactive data publishing and sharing scenarios

[11]. Data anonymization refers to hiding characteristics

and/or sensitive data for owners of data records. Then, the

privacy of an individual can be effectively preserved while

certain increasing information is exposed to data users for

various analysis and mining. A variety of anonymization

algorithms with different anonymization operations have

been proposed [15]. However, the scale of data sets that

need anonymizing in some cloud applications increases

tremendously in accordance with the cloud computing and

Big Data trends [1]. Data sets have become so large that

anonymizing such data sets is becoming a considerable

challenge for conventional anonymization algorithms. The

researchers have begin to investigate the scalability

problem of large-scale data anonymization. Large-scale

data processing frameworks like MapReduce have been

included with cloud to provide dominant computation

capability for applications. So, it is promising to adopt

such frameworks to address the scalability problem of

anonymizing large-scale data for privacy preservation. In

our research, we leverage MapReduce, a widely adopted

analogous data processing framework, to address the

scalability problem of the top-down specialization (TDS)

approach [12] for large-scale data anonymization. The

TDS approach, offering a good trade off between data

effectiveness and data reliability, is widely applied for data

anonymization [12]. Most TDS algorithms are centralized,

resulting in their insufficiency in handling large scale data

sets. Although some dispersed algorithms have been

proposed they mainly focus on secure have been proposed

they mainly focus on secure anonymization of data sets

from numerous parties, rather than the scalability aspect.

As the MapReduce computation hypothesis is moderately

simple, it is still a challenge to design proper MapReduce

jobs for TDS. In this paper, we propose a highly scalable

two-phase TDS approach for data anonymization based on

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45116 542

MapReduce on cloud. To make full use of the parallel

capability of MapReduce on cloud, specializations

required in an anonymization process are split into two

phases. In the first one, original data sets are partitioned

into a group of smaller data sets, and these data sets are

anonymized in parallel, producing intermediate results. In

the second one, the intermediate results are integrated into

one, and further anonymized to achieve consistent k-

anonymous data sets. We leverage MapReduce to

accomplish the concrete computation in both phases. A

group of MapReduce jobs is purposely designed and

corresponding to perform specializations on data sets

collaboratively.
The major contributions of our research are threefold.

First, we cratively apply MapReduce on cloud to TDS for

data anonymization and consciously design a group of

innovative MapReduce jobs to concretely accomplish

thespecializations in a highly scalable fashion. Second, we

propose a two-phase TDS approach to gain high scalability

via allowing specializations to be conducted on several

data partitions in parallel during the first phase. Third,

experimental results show that our approach can

significantly improve the scalability and efficiency of TDS

for data anonymization over existing approaches. The

remainder of this paper is organized as follows: The next

section reviews related work, and analyzes the scalability

problem in existing TDS algorithms.

The remainder of this paper is organized as follows: The

next section reviews related work, and analyzes the

scalability problem in existing TDS algorithms. In Section

III, we briefly present proposed system for our approach.

Section IV preliminary approach, and Section 5 formulates

the two-phase TDS approach. In Section 6 formulates

mapreduce version of centralized TDS. Finally, we

conclude this paper.

II. . RELATED WORK AND PROBLEM ANALYSIS

A. Related Work

Recently, data privacy preservation has been

extensively investigated [11]. We briefly review related

work below. LeFevre et al. [17] addressed the scalability

problem of anonymization algorithms via introducing

scalable decision trees and sampling techniques.

Iwuchukwu and Naughton [18] proposed an R-tree index-

based approach by building a spatial index over data sets,

achieving high efficiency. However, the above approaches

aim at multidimensional generalization [15], thereby

failing to work in the TDS approach. Fung et al. [12], [20],

[21] proposed the TDS approach that produces anonymous

data sets without the data exploration problem [11]. A data

structure Taxonomy Indexed PartitionS (TIPS) is

subjugated to improve the efficiency of TDS. But the

approach is centralized, leading to its insufficiency in

handling large-scale data sets. Several distributed

algorithms are proposed to preserve privacy of multiple

data sets retained by multiple parties. Jiang and Clifton

[24] and Mohammed et al. [22] proposed distributed

algorithms to anonymize vertically partitioned data from

different data sources without disclosing privacy

information from one party to another. Jurczyk and Xiong

[25] and Mohammed et al. [20] proposed distributed

algorithms to anonymize horizontally partitioned data sets

retained by multiple holders. However, the above

distributed algorithms mainly aim at securely integrating

and anonymizing multiple data sources. Our research

mainly focuses on the scalability issue of TDS

anonymization, and is, therefore, orthogonal and

complementary to them. As to MapReduce-relevant

privacy protection, Roy et al. [26] investigated the data

privacy problem caused by MapReduce and presented a

system named Airavat incorporating mandatory access

control with differential privacy. Further, Zhang et al. [27]

leveraged MapReduce to automatically partition a

computing job in terms of data security levels, protecting

data privacy in hybrid cloud. Our research exploits

MapRedue itself to anonymize large-scale data sets before

data are further processed by other MapReduce jobs,

arriving at privacy preservation.

B.Problem Analysis

We analyze the scalability problem of existing TDS

approaches when handling large-scale data sets on cloud.

The centralized TDS approaches in [12], [20], and [21]

exploits the data structure TIPS to improve the scalability

and efficiency by indexing anonymous data records and

retaining statistical information in TIPS. The data structure

speeds up the specialization process because indexing

structure avoids frequently scanning entire data sets and

storing statistical results circumvents recomputation

overheads. On the other hand, the amount of metadata

retained to maintain the statistical information and linkage

information of record partitions is relatively large

compared with data sets themselves, thereby consuming

considerable memory. Moreover, the overheads incurred

by maintaining the linkage structure and updating the

statistic information will be huge when date sets become

large. Hence, centralized approaches probably suffer from

low efficiency and scalability when handling large-scale

data sets. There is an assumption that all data processed

should fit in memory for the centralized approaches [12].

Unfortunately, this assumption often fails to hold in most

data-intensive cloud applications nowadays. In cloud

environments, computation is provisioned in the form of

virtual machines (VMs). Usually, cloud compute services

offer several flavors of VMs. As a result, the centralized

approaches are difficult in handling large-scale data sets

well on cloud using just one single VM even if the VM has

the highest computation and storage capability. A

distributed TDS approach [20] is proposed to address the

distributed anonymization problem which mainly concerns

privacy protection against other parties, rather than

scalability issues. Further, the approach only employs

information gain, rather than its combination with privacy

loss, as the search metric when determining the best

specializations. As pointed out in [12], a TDS algorithm

without considering privacy loss probably chooses a

specialization that leads to a quick violation of anonymity

requirements. Hence, the distributed algorithm fails to

produce anonymous data sets exposing the same data

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45116 543

utility as centralized ones. Besides, the issues like

communication protocols and fault tolerance must be kept

in mind when designing such distributed algorithms. As

such, it is inappropriate to leverage existing distributed

algorithms to solve the scalability problem of TDS.

III. PROPOSED SYSTEM

 In this paper, we propose a scalable two-phase top-down

specialization (TDS) approach to anonymize large-scale

data sets using the MapReduce framework on cloud. In

both phases of our approach, we deliberately design a

group of innovative MapReduce jobs to concretely

accomplish the specialization computation in a highly

scalable way. This approach get input data‟s and split into

the small data sets. Then we apply the

ANONYMIZATION on small data sets to get intermediate

result. Then small data sets are merge and again apply the

ANONYMIZATION. We analyze the each and every data

set sensitive field and give priority for this sensitive field.

Then we apply ANONYMIZATION on this sensitive field

only depending upon the scheduling.

A.ADVANTAGES OF PROPOSED SYSTEM

• Accomplish the specializations in a highly

 scalable fashion.

▪ Gain high scalability.

◦ Significantly improve the scalability and

 efficiency of TDS for data anonymization over

existing approaches.

• The overall performance of the providing privacy

 is high.

• Its ability to handles the large amount of dat sets.

• The anonymization is effective to provide the

 privacy on data sets.

• Here we using the scheduling strategies to handle

the high amount of datasets.

IV.PRELIMINARY

A.Basic Notations

We describe several basic notations for convenience. Let D

denote a data set containing data records. A record r € D

has the form r = (v1, v2, . . . , vm, sv), where m is the

number of attributes, vi, 1 ≤ i ≤ m, is an attribute value and

sv is a sensitive value like diagnosis. The set of sensitive

values is denoted as SV. An attribute of a record is denoted

as Attr, and the taxonomy tree of this attribute is denoted as

TT. Let DOM represent the set of all domain values in TT.

The quasi-identifier of a record is denoted as qid = hq1,

q2, . . . ,qmi, where qi € DOMi. Quasi identifiers,

representing groups of anonymous records, can lead to

privacy breach if they are too specific that only a small

group of people are linked to them [11]. Quasi-identifier

set is denoted as QID =(Attr1, Attr2, . . . , Attrm). The set

of the records with qid is defined as QI-group [28],

denoted by QIG(qid). QI is the acronym of quasi-

identifier.Without loss of generality, we adopt k-anonymity

[23] as the privacy model herein, i.e., for any qid € QID,

the size of G(qid) must be zero or at least k. Otherwise, the

individuals owning such a quasi-identifier can be linked to

sensitive information with higher confidence than

expected, resulting in privacy breach. The k-anonymity

privacy model can combat such a privacy breach because

it ensures that an individual will not be distinguished from

other at least k _ 1 ones. The anonymity parameter k is

specified by users according to their privacy requirements.

In the TDS approach, a data set is anonymized via

performing specialization operations. A specialization

operation is to replace a domain value with all its child

values. Formally, a specialization operation is represented

as spec : p → Child(p), where p is a domain value and

Child(p) DOM is the set of all the child values of p. The

domain values of an attribute form a “cut” through its

taxonomy tree [11]. The cut of attribute Attri, denoted as

Cuti, 1 ≤ i ≤ m, is a subset of values in DOMi . Cuti

contains exactly one value in each root-to-leaf path in

taxonomy tree TTi. The cuts of all attributes determine the

anonymity of a data set. To capture the degree of

anonymization intuitively during the specialization

process, we give the subsequent definition.

Definition 1. (Anonymization Level). A vector of cuts of

all attributes is defined as anonymization level, denoted as

AL. Formally, AL = (Cut1; Cut2; . . . ; Cutm), where Cuti,

1 ≤ i ≤ m is the cut of taxonomy tree TTi.

Anonymization level can intuitively represent the

anonymization degree of a data set, i.e., the more specific

AL a data set has, the less degree of anonymization it

corresponds to. Thus, TDS approaches employ

anonymization level to track and manage the specialization

process.

B.Top-Down Specialization
Generally, TDS is an iterative process starting

from the topmost domain values in the taxonomy trees of

attributes. Each round of iteration consists of three main

steps, namely, finding the best specialization, performing

specialization and updating values of the search metric for

the next round [12]. Such a process is repeated until k-

anonymity is violated, to expose the maximum data utility.

The goodness of a specialization is measured by a search

metric. We adopt the information gain per privacy loss

(IGPL), a trade off metric that considers both the privacy

and information requirements, as the search metric in our

approach. A specialization with the highest IGPL value is

regarded as the best one and selected in each round.

Given a specialization spec : p → Child(p), the IGPL of

the specialization is calculated by

IGPL(spec) = IG(spec)=(PL(spec) + 1). (1)

The term IG(spec) is the information gain after performing

spec, and PL(spec) is the privacy loss. IG(spec) and

PL(spec) can be computed via statistical information

derived from data sets.

V. TWO-PHASE TOP DOWN

SPECIALIZATION(TPTDS)

A.Sketch of Two-Phase Top-Down Specialization

We propose a TPTDS approach to conduct the

computation required in TDS in a highly scalable and

efficient fashion. The two phases of our approach are

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45116 544

based on the two levels of parallelization provisioned by

MapReduce on cloud. Basically, MapReduce on cloud has

two levels of parallelization, i.e., job level and task level.

Job level parallelization means that multiple MapReduce

jobs can be executed simultaneously to make full use of

cloud infrastructure resources. Combined with cloud,

MapReduce becomes more powerful and elastic as cloud

can offer infrastructure resources on demand, for example,

Amazon Elastic MapReduce service [29]. Task level

parallelization refers to that multiple mapper/reducer tasks

in a MapReduce job are executed simultaneously over data

splits. To achieve high scalability, we parallelizing

multiple jobs on data partitions in the first phase, but the

resultant anonymization levels are not identical. To obtain

finally consistent anonymous data sets, the second phase is

necessary to integrate the intermediate results and further

anonymize entire data sets. Details are formulated as

follows. In the first phase, an original data set D is

partitioned into smaller ones.Then, we run a subroutine

over each of the partitioned data sets in parallel to make

full use of the job level parallelization of MapReduce. The

subroutine is a MapReduce version of centralized TDS

(MRTDS) which concretely conducts the computation

required in TPTDS. MRTDS anonymizes data partitions to

generate intermediate anonymization levels. An

intermediate anonymization level means that further

specialization can be performed without violating k

anonymity. MRTDS only leverages the task level

parallelization of MapReduce. Formally, let function

MRTDS(D, k, AL) → AL0 represent a MRTDS routine

that anonymizes data set D to satisfy k-anonymity from

anonymization level AL to AL0. Thus, a series of functions

MRTDS(Di, kI, AL0) → AL0i, 1 ≤ i ≤ p, are executed

simultaneously in the first phase. The term kI denotes the

intermediate anonymity parameter, usually given by

application domain experts. Note that kI should satisfy kI

≥ k to ensure privacy preservation. AL0 is the initial

anonymization level, i.e., AL0 = ({Top1}, {Top2}, . . .,

{Topm}), where Topj € DOMj, 1 ≤ j ≤ m, is the topmost

domain value in TTi. AL0 i is the resultant intermediate

anonymization level. In the second phase, all intermediate

anonymization levels are merged into one. The merged

anonymization level is denoted as ALI . The merging

process is formally represented as function

merge((AL01,AL02, . . .;AL0p)) → ALI .Then, the whole

data set D is further anonymized based on ALI , achieving

k-anonymity finally, i.e., MRTDS(D, k, ALI) → AL⃰, where

AL⃰ denotes the final anonymization level.

ALGORITHM 1. SKETCH OF TWO-PHASE TDS

(TPTDS).

Input: Data set D, anonymity parameters k, kI and the

number of partitions p.
Output: Anonymous data set D⃰.
1: Partition D into Di,1 ≤ i ≤ p.

2: Execute MRTDS(Di, kI, AL0) → AL0i, 1 ≤ i ≤ p in

parallel as multiple MapReduce jobs.

3: Merge all intermediate anonymization levels into one,

Merge(AL01, AL02, . . ., AL0p) → ALI .

4: Execute MRTDS(D, k, ALI) → AL⃰ to achieve k-

anonymity.

5: Specialize D according to AL⃰, Output D⃰.

In essential, TPTDS divides specialization operations

required for anonymization into the two phases. Let SP1i,

1 ≤ i ≤ p, denote the specialization sequence on Di in the

first phase, i.e., SP1i = (speci1, speci2, . . . ; speciji),

where ji is the number of specializations. The first

common subsequence of SP1i, 1 ≤ i ≤ p, is denoted as SPI

. Let SP2 denote the specialization sequence in the second

phase. SP2 is determined by ALI rather than kI .

Specifically, more specific ALI implies smaller SP2.

Throughout TPTDS, the specializations in the set SPI ᶸ

SP2 come into effect for anonymization. The influence of

p and kI on the efficiency is analyzed as follows. Greater p

means higher degree of parallelization in the first phase,

and less kI indicates more computation is conducted in the

first phase. Thus, greater p and less kI can improve the

efficiency.

B.Data Partition
When D is partitioned into Di, 1 ≤ i ≤ p, it is

required that the distribution of data records in Di is

similar to D.A data record here can be treated as a point in

an m-dimension space, where m is the number of

attributes. Thus, the intermediate anonymization levels

derived from Di, 1 ≤ i ≤ p, can be more similar so that we

can get a better merged anonymization level. Random

sampling technique is adopted to partition D, which can

satisfy the above requirement. Specifically, a random

number rand, 1 ≤ rand ≤ p, is generated for each data

record. A record is assigned to the partition Drand.

Algorithm 2 shows the MapReduce program of data

partition. Note that the number of Reducers should be

equal to p, so that each Reducer handles one value of rand,

exactly producing p resultant files. Each file contains a

random sample of D.

ALGORITHM 2. DATA PARTITION MAP &

REDUCE.

Input: Data record (IDr, r), r € D, partition parameter p.
Output: Di, 1 ≤ i ≤ p.
Map: Generate a random number rand, where 1 ≤ rand ≤ p;

emit (rand, r).

Reduce: For each rand, emit (null, list(r)). Once partitioned

data sets Di, 1 ≤ i ≤ p, are obtained, we run MRTDS(Di,

kI, AL0) on these data sets in parallel to derive

intermediate anonymization levels ALi , 1 ≤ i ≤ p.

C. Anonymization Level Merging

All intermediate anonymization levels are merged into one

in the second phase. The merging of anonymization levels

is completed by merging cuts. Specifically, let Cuta in

AL0a and Cutb in AL0b be two cuts of an attribute. There

exist domain values qa € Cuta and qb € Cutb that satisfy

one of the three conditions: qa is identical to qb, qa is more

general than qb, or qa is more specific than qb. To ensure

that the merged intermediate anonymization level ALI

never violates privacy requirements, the more general one

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45116 545

is selected as the merged one, for example, qa will be

selected if qa is more general than or identical to qb. For

the case of multiple anonymization levels, we can merge

them in the same way iteratively. The following lemma

ensures that ALI still complies privacy requirements.

 D.Data Specialization

An original data set D is concretely specialized for

anonymization in a one-pass MapReduce job. After

obtaining the merged intermediate anonymization level

ALI, we run MRTDS(D, k, ALI) on the entire data set D,

and get the final anonymization level AL⃰. Then, the data

set D is anonymized by replacing original attribute values

in D with the responding domain values in AL⃰. Details of

Map and Reduce functions of the data specialization

MapReduce job are described in Algorithm3. The Map

function emits anonymous records and its count. The

Reduce function simply aggregates these anonymous

records and counts their number. An anonymous record

and its count represent a QI-group. The QI-groups

constitute the final anonymous data sets.

ALGORITHM 3. DATA SPECIALIZATION MAP &

REDUCE.

Input: Data record (IDr, r), r € D. ; Anonymization level

AL⃰.
Output: Anonymous record (r⃰ , count).
Map: Construct anonymous record r⃰ = p1, (p2, . . . , pm,

sv), pi, 1 ≤ i ≤ m, is the parent of a specialization in current

AL and is also an ancestor of vi in r, emit (r⃰,count).

Reduce: For each r⃰, sum ← ∑count, emit (r⃰ , sum).

VI. MAPREDUCE VERSION OF

CENTRALIZED TDS

We elaborate the MRTDS in this section. MRTDS

plays a core role in the two-phase TDS approach, as it is

invoked in both phases to concretely conduct computation.

Basically, a practical MapReduce program consists of Map

and Reduce functions, and a Driver that coordinates the

macro execution of jobs.

A. MRTDS Driver
Usually, a single MapReduce job is inadequate to

accomplish a complex task in many applications. Thus, a

group of MapReduce jobs are orchestrated in a driver

program to achieve such an objective. MRTDS consists of

MRTDS Driver and two types of jobs, i.e., IGPL

Initialization and IGPL Update. The driver arranges the

execution of jobs.

B. IGPL Initialization Job
The main task of IGPL Initialization is to initialize

information gain and privacy loss of all specializations in

the initial anonymization level AL.

C.IGPL Update Job
The IGPL Update job dominates the scalability

and efficiency of MRTDS, since it is executed iteratively.

So far, iterative MapReduce jobs have not been well

supported by standard MapReduce framework like

Hadoop. The IGPL Update job is quite similar to IGPL

Initialization, except that it requires less computation and

consumes less network bandwidth.

 Since the IGPL Update job dominates the scalability and

efficiency of MRTDS, we briefly analyze its complexity as

follows. Let n denote all the records in a data set, m be the

number of attributes, s be the number of mappers, and t be

the number of reducers. As a mapper emits (m + 1) key-

value pairs, it takes O(1) space and O(m + n/s)

time.Similarly, a reducer takes O(1) space and O(m + n/t)

time. Note that a reducer only needs O(1) space due to the

MapReduce feature that the key-value pairs are sorted in

the shuffle phase. Otherwise, the reducer needs more space

to accumulate statistic information for a variety of

specializations. The communication cost is O(m + n)

according to the map function, but communication traffics

can be reduced heavily by optimization techniques like

Combiner.

Fig.1. Execution framework overview of MRTDS.

D.Implementation and Optimization

To elaborate how data sets are processed in MRTDS,

the execution framework based on standard MapReduce is

depicted in Fig. 1. The solid arrow lines represent the data

flows in the canonical MapReduce framework. From Fig.

1, we can see that the iteration of MapReduce jobs is

controlled by anonymization level AL in Driver. The data

flows for handling iterations are denoted by dashed arrow

lines. AL is dispatched from Driver to all workers

including Mappers and Reducers via the distributed cache

mechanism. The value of AL is modified in Driver

according to the output of the IGPL Initialization or IGPL

Update jobs. As the amount of such data is extremely

small compared with data sets that will be anonymized,

they can be efficiently transmitted between Driver and

workers. We adopt Hadoop, an open-source

implementation of MapReduce, to implement MRTDS.

Since most of Map and Reduce functions need to access

current anonymization level AL, we use the distributed

cache mechanism to pass the content of AL to each

Mapper or Reducer node as shown in Fig. 1. Also, Hadoop

provides the mechanism to set simple global variables for

Mappers and Reducers. The best specialization is passed

into the Map function of IGPL Update job in this way. The

partition hash function in the shuffle phase is modified

because the two jobs require that the key-value pairs with

the same key:p field rather than entire key should go to the

same Reducer. To reduce communication traffics, MRTDS

exploits combiner mechanism that aggregates the key-

value pairs with the same key into one on the nodes

running Map functions.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45116 546

VI. CONCLUSION

In this paper, we have investigated the scalability

problem of large-scale data anonymization by TDS, and

proposed a highly scalable two-phase TDS approach using

MapReduce on cloud. Data sets are partitioned and

anonymized in parallel in the first phase, producing

intermediate results. Then, the intermediate results are

merged and further anonymized to produce consistent k-

anonymous data sets in the second phase.

We have creatively applied MapReduce on cloud to data

anonymization and intentionally designed a group of

inventive MapReduce jobs to concretely achieve the

specialization computation in a highly scalable way. The

scalability and efficiency of TDS are improved

significantly over existing approaches.

 ACKNOWLEDGMENT

 I would like to express my sence of proud

gratitude and indebtedness to my guide, for his valuable

guidance, suggestions, timely supervision for successful

completion of my paper. Above all I would like to thanks

all my family members and friends for their constructive

critism and construct support in making this grand success.

REFERENCE

[1] S. Chaudhuri, “What Next?: A Half-Dozen Data Management
 Research Goals for Big Data and the Cloud,” Proc. 31st Symp.
 Principles of Database Systems (PODS ‟12), pp. 1-4, 2012.

[2] M. Armbrust, A. Fox, R. Griffith,, Joseph, R. Katz, A.

 Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, “A View of Cloud Computing,” Comm. ACM, vol. 53,

no. 4, pp. 50-58, 2010.

[3] L. Wang, J. Zhan, W. Shi, and Y. Liang, “In Cloud, Can Scientific
 Communities Benefit from the Economies of Scale?,” IEEE Trans.
 Parallel and Distributed Systems, vol. 23, no. 2, pp.296-303, Feb. 2012.

[4] H. Takabi, J.B.D. Joshi, and G. Ahn, “Security and Privacy

Challenges in Cloud Computing Environments,” IEEE Security
and Privacy, vol. 8, no. 6, pp. 24-31, Nov. 2010.

[5] D. Zissis and D. Lekkas, “Addressing Cloud Computing Security

 Issues,” Future Generation Computer Systems, vol. 28, no. 3,
pp. 583- 592, 2011.

[6] X. Zhang, C. Liu, S. Nepal, S. Pandey, and J. Chen, “A Privacy

 Leakage Upper-Bound Constraint Based Approach for Cost-
Effective Privacy Preserving of Intermediate Data Sets in Cloud,”

 IEEE Trans. Parallel and Distributed Systems, to be published, 2012.
[7] L. Hsiao-Ying and W.G. Tzeng, “A Secure Erasure Code-Based

 Cloud Storage System with Secure Data Forwarding,” IEEE

Trans. Parallel and Distributed Systems, vol. 23, no. 6, pp. 995- 1003, 2012.

[8] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-Preserving

 Multi-Keyword Ranked Search over Encrypted Cloud Data,” Proc.
 IEEE INFOCOM, pp. 829-837, 2011.

[9] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler, “Gupt:

Privacy Preserving Data Analysis Made Easy,” Proc. ACM SIGMOD

Int‟l Conf. Management of Data (SIGMOD ‟12), pp. 349- 360, 2012.

[10] Microsoft HealthVault, http://www.microsoft.com/health/ww/

products/Pages/healthvault.aspx, 2013.
[11] B.C.M. Fung, K. Wang, R. Chen, and P.S. Yu, “Privacy-Preserving

 Data Publishing: A Survey of Recent Devel- opments,” ACM

Computing Surveys, vol. 42, no. 4, pp. 1-53, 2010.
[12] B.C.M. Fung, K. Wang, and P.S. Yu, “Anonymizing Classification

Data for Privacy Preservation,” IEEE Trans. Knowledge and

Data Eng., vol. 19, no. 5, pp. 711-725, May 2007.
[13] X. Xiao and Y. Tao, “Anatomy: Simple and Effective Privacy

Preservation,” Proc. 32nd Int‟l Conf. Very Large Data Bases

(VLDB‟06), pp. 139-150, 2006.

[14] K. LeFevre, D.J. DeWitt, and R. Ramakrishnan, “Incognito:

Efficient Full-Domain K-Anonymity,” Proc. ACM SIGMOD Int‟l

Conf. Management of Data (SIGMOD ‟05), pp. 49-60, 2005.

[15] K. LeFevre, D.J. DeWitt, and R. Ramakrishnan,

“MondrianMultidimensional K-Anonymity,” Proc. 22nd Int‟l Conf.
Data Eng. (ICDE ‟06), 2006.

[16] V. Borkar, M.J. Carey, and C. Li, “Inside „Big Data Management‟:

Ogres, Onions, or Parfaits?,” Proc. 15th Int‟l Conf. Extending
Database Technology (EDBT ‟12), pp. 3-14, 2012.

[17] K. LeFevre, D.J. DeWitt, and R. Ramakrishnan, “Workload-Aware

Anonymization Techniques for Large-Scale Data Sets,” ACM Trans.
Database Systems, vol. 33, no. 3, pp. 1-47, 2008.

[18] T. Iwuchukwu and J.F. Naughton, “K-Anonymization as Spatial

Indexing: Toward Scalable and Incremental Anonymization,” Proc.
33rd Int‟l Conf. Very Large Data Bases (VLDB ‟07), pp.746- 757,2007.

[19] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data rocessing

on Large Clusters,” Comm. ACM, vol. 51, no. 1, pp. 107-113, 2008.
[20] N. Mohammed, B. Fung, P.C.K. Hung, and C.K. Lee, “Centralized

 and Distributed Anonymization for High-Dimensional Healthcare

 Data,” ACM Trans. Knowledge Discovery from Data, vol. 4, no.4

 Article 18, 2010.

[21] B. Fung, K. Wang, L. Wang, and P.C.K. Hung, “Privacy-

Preserving Data Publishing for Cluster Analysis,” Data and
Knowledge Eng., vol. 68, no. 6, pp. 552-575, 2009.

[22] N. Mohammed, B.C. Fung, and M. Debbabi, “Anonymity Meets
Game Theory: Secure Data Integration with MaliciousParticipants,”

VLDB J., vol. 20, no. 4, pp. 567-588, 2011.

[23] L. Sweeney, “k-Anonymity: A Model for Protecting Privacy,” Int‟l
J. Uncertainty, Fuzziness and Knowledge-Based Systems,vol. 10,

no. 5, pp. 557-570, 2002.

[24] W. Jiang and C. Clifton, “A Secure Distributed Framework for
Achieving k-Anonymity,” VLDB J., vol. 15, no. 4, pp. 316-333, 2006

